In the new energy battery production workshop, do you face such a dilemma: single conveyor line running at full capacity still can not keep up with the production rhythm, the lack of space to limit the expansion of the production line, frequent jamming and downtime eating into the delivery cycle? A head battery enterprise had been in this predicament - until theIntroduction of a double-layer circulation conveyor structureThe efficiency of its module assembly lineElevate 52%Space utilisationRaise 40%The single line capacity exceeded 5PPM (5 pieces per minute). This article will dismantle the landing path of this set of solutions, revealing the core technical logic of the efficiency leap.
I. Pain point scenarios: the efficiency ceiling of single-level conveyor lines
- production capacity bottleneck
Conventional single-row conveying channel exit can only be one by one out of the material (such as the background technology described in the "single row of cells into the conveying channel one by one"), the feed rate is locked by the physical structure, resulting in the entire line beat stuck in the 3PPM or less. - Spatial constraints
Horizontal single-layer closed-loop conveying of large battery fixtures need to occupy a large area of space, enterprises face high costs of plant renovation when expanding production. - Operations and maintenance costs surge
Frequent jams (e.g., cells stacking and jamming at narrow aisle exits) resulted in downtime for maintenance and over 50 hours of lost man-hours per month.
II. Technology breakthrough programme for the double-layer recycling structure
▶ Space-optimised design: unlocking potential vertically
- Bidirectional circulation channel
The upper conveyor belt transports the battery modules in the forward direction (X-axis direction), and the lower layer runs in the reverse direction (-X-axis direction), forming a closed-loop backflow. Compared to a single-layer layout, theDouble the conveying efficiency for the same footprint. - Staggered anti-seize structure
The transition channel usesCurved transition surface + width gradient design(1.5-2 times the width of the battery), so that the battery is automatically misaligned when passing between layers, completely eliminating the risk of jamming. - Modular Expansion Interface
Integration through standardised connectorsJacking and traversing mechanism, andhoistrespond in singingElevating rotating moduleIt supports the flexible adjustment of production lines (e.g. adding new inspection stations).
▶ Conveying Technology Upgrade: Intelligent Cooperative Control
- Dynamic beat matching
Upper feed end settingDual-channel buffer mechanism: The first channel (single cell width) ensures orderly feeding and the second channel (1.8x width) stores the cells to be fed, increasing the feeding rate by 70%. - Precision Positioning System
Conveyor Belt EmbeddingSemi-circular battery compartmentintegrateIO-Link real-time positioning feedbackIt achieves millimetre-level docking between modules and jigs and fixtures, with a positioning accuracy of ±0.5mm. - Active Dust Control
Conveyor baffles integrated on the insideNegative pressure dust ductWith the fully enclosed structure of the speed chain (aluminium body wrapped around the chain), the dust residue is reduced by 90%.
▶ Intelligent Collaboration: Data-Driven Operations and Maintenance System
Image Codegraph LR A[Upper conveyor belt sensor] --> B(PLC Central Controller) C[Lower return velocity monitoring] --> B D[Pressure feedback on jacking mechanism] --> B B --> E{{dynamic speed regulation algorithm}} E --> F[Synchronisation of transplanter speed] E --> G[Optimisation of lift platform response]
#svgGraph86985648285142{font-family: "trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}@keyframes edge- animation-frame{from{stroke-dashoffset:0;}}@keyframes dash{to{stroke-dashoffset:0;}}#svgGraph86985648285142 .edge-animation-slow {stroke-dasharray:9,5!important;stroke-dashoffset:900;animation:dash 50s linear infinite;stroke-linecap:round;} #svgGraph86985648285142 .edge-animation-fast{stroke-dasharray:9,5!important;stroke-dashoffset:900;animation:dash 20s linear infinite;stroke-linecap:round;}#svgGraph86985648285142 .error-icon{fill:#552222;}#svgGraph86985648285142 .error-text{ fill:#552222;stroke:#552222;}#svgGraph86985648285142 .edge-thickness-normal{stroke-width:1px;} #svgGraph86985648285142 .edge-thickness-thick{stroke-width:3.5px;}#svgGraph86985648285142 .edge-pattern-solid{stroke- dasharray:0;}#svgGraph86985648285142 .edge-thickness-invisible{stroke-width:0;fill:none;}#svgGraph86985648285142 .edge- pattern-dashed{stroke-dasharray:3;}#svgGraph86985648285142 .edge-pattern-dotted{stroke-dasharray:2;}#svgGraph86985648285142 .marker{fill:#333333;stroke:#333333;}#svgGraph86985648285142 .marker.cross{stroke:#333333;} #svgGraph86985648285142 svg{font-family: "trebuchet ms",verdana,arial,sans-serif;font-size:16px;}#svgGraph86985648285142 p{ margin:0;}#svgGraph86985648285142 .label{font-family: "trebuchet ms",verdana,arial,sans-serif;color:#333;} #svgGraph86985648285142 .cluster-label text{fill:#333;}#svgGraph86985648285142 .cluster-label span{color:#333;} #svgGraph86985648285142 .cluster-label span p{background-colour:transparent;}#svgGraph86985648285142 .label text, #svgGraph86985648285142 span{fill:#333;color:#333;}#svgGraph86985648285142 .node rect,#svgGraph86985648285142 . node circle,#svgGraph86985648285142 .node ellipse,#svgGraph86985648285142 .node polygon,#svgGraph86985648285142 .node path{ fill:#ECECFF;stroke:#9370DB;stroke-width:1px;}#svgGraph86985648285142 .rough-node .label text,#svgGraph86985648285142 .node .label text,#svgGraph86985648285142 .image-shape .label,#svgGraph86985648285142 .icon-shape .label{text-anchor:middle;} #svgGraph86985648285142 .node .katex path{fill:#000;stroke:#000;stroke-width:1px;}#svgGraph86985648285142 .rough-node . label,#svgGraph86985648285142 .node .label,#svgGraph86985648285142 .image-shape .label,#svgGraph86985648285142 .icon-shape . label{text-align:centre;}#svgGraph86985648285142 .node.clickable{cursor:pointer;}#svgGraph86985648285142 .root .anchor path{ fill:#333333!important;stroke-width:0;stroke:#333333;}#svgGraph86985648285142 .arrowheadPath{fill:#333333;} #svgGraph86985648285142 .edgePath .path{stroke:#333333;stroke-width:2.0px;}#svgGraph86985648285142 .flowchart-link{stroke :#333333;fill:none;}#svgGraph86985648285142 .edgeLabel{background-color:rgba(232,232,232, 0.8);text-align:centre;} #svgGraph86985648285142 .edgeLabel p{background-color:rgba(232,232,232, 0.8);}#svgGraph86985648285142 .edgeLabel rect{opacity. 0.5;background-color:rgba(232,232,232, 0.8);fill:rgba(232,232,232, 0.8);}#svgGraph86985648285142 .labelBkg{background-color:rgba( 232, 232, 232, 0.5);}#svgGraph86985648285142 .cluster rect{fill:#ffffde;stroke:#aaaa33;stroke-width:1px;} #svgGraph86985648285142 .cluster text{fill:#333;}#svgGraph86985648285142 .cluster span{color:#333;} #svgGraph86985648285142 div.mermaidTooltip{position:absolute;text-align:centre;max-width:200px;padding:2px;font-family:" trebuchet ms",verdana,arial,sans-serif;font-size:12px;background:hsl(80, 100%, 96.2745098039%);border:1px solid #aaaa33; border-radius:2px;pointer-events:none;z-index:100;}#svgGraph86985648285142 .flowchartTitleText{text-anchor:middle;font-size. 18px;fill:#333;}#svgGraph86985648285142 rect.text{fill:none;stroke-width:0;}#svgGraph86985648285142 .icon-shape, #svgGraph86985648285142 .image-shape{background-color:rgba(232,232,232, 0.8);text-align:centre;}#svgGraph86985648285142 .icon -shape p,#svgGraph86985648285142 .image-shape p{background-color:rgba(232,232,232, 0.8);padding:2px;}#svgGraph86985648285142 . icon-shape rect,#svgGraph86985648285142 .image-shape rect{opacity:0.5;background-color:rgba(232,232,232, 0.8);fill:rgba(232,232, 232, 0.8);}#svgGraph86985648285142 :root{-mermaid-font-family: "trebuchet ms",verdana,arial,sans-serif;}
Upper conveyor belt sensors
PLC Central Controller
Lower return velocity monitoring
Pressure feedback for jacking mechanism
Dynamic speed control algorithm
Synchronisation of transplanter speed
Optimising lifting platform response
By collecting data from each node of the conveyor line in real time, it dynamically coordinates the action sequence of the transplanter and lifting platform, reducing the waiting time of the equipment by 15%.
III. Effectiveness on the ground: transforming value from theory to production
A lithium battery factory achieved after applying the solution:
- Leap in efficiency
Module conveying beat was increased from 3.2PPM to 5.1PPM, and the daily capacity of a single line was increased by 480 pieces.- Quality breakthroughs
The damage rate of pole piece due to conveying collision was reduced from 0.8% to 0.12%, and the annual saving of rework cost was over 2 million RMB.- Space release
The double-floor layout saves 40% floor space, freeing up an area for two new welding robots.- O&M Simplification
Modular design reduces downtime to less than 15 minutes and annual downtime by 80%.
IV. Industry application extension: technology reuse scenarios
The programme has been successfully ported to three major scenarios:
- Battery Dispatch for Switching StationsDual-layer conveyor mechanism for simultaneous handling of battery packs with low/full charge, reducing changeover time to 3 minutes.
- Inspection Line Cycle Test: First transport layer feed + second transport layer return, detection capacity increased by 60%
- Depalletising and palletising systemsHeavy-duty Speed Chain (Type 12B) for unmanned loading and unloading of 300kg pallets.
"Whereas the conventional conveyor line is the blood vessel of production, the double-layer circulation system is the heart - it redefines the efficiency of pumping at capacity."--A new energy production line planning director of the actual test feedback
Conclusion: the underlying logic of the efficiency revolution
conveyance bottlenecks in battery production, essentiallyThe game of space resources versus time cycles.. The double loop structure breaks through three dimensions:
🔹space dimension: Vertical superimposed flow paths that break through planar constraints;
🔹time dimension: Buffered channels + dynamic speed regulation eliminates wasteful waiting;
🔹Quality Dimension: Closed dust protection and precise positioning cut off the source of loss.
When technological innovation directly refers to the essential contradictions of production, the efficiency leap of 50% is just the starting point - the next stop of the intelligent factory is accelerating in the gear rotation of the conveyor line.
The technical solutions in this paper are derived from the patent design (Document No. 36668972, 30329067) and Wei Chuang Intelligent landing cases, data verified by the production line testing.